Land creatures – including us - are used to using our vision to detect the world around us. Ecologists walking in forests, meadows, grasslands, or deserts can immediately pick out the patterns of the life forms inhabiting the space and easily design sampling protocols to see the relationships to each other and their environment. Not so in the ocean environment. As we stand on the deck of a ship peering into the darkness of the sea surface, we can rarely visualize the animals and plants living just below the surface – much less those living in the depths of the ocean. Divers swimming in the shallow reaches of the ocean have limited visibility (only a few meters in coastal regions, up to 20-30 meters in very clear water), because seawater is a very poor medium for transmitting visible light. Light is absorbed, scattered, and reflected more in seawater than in air by orders of magnitude. This limitation affects even the remotely operated and autonomous vehicles with cameras and video systems that can roam the ocean depths, although this technology has given us images of the organisms living deep in the ocean and are leading to new insights about their spatial patterns and behavior on small spatial scales. So how is it possible to view the fascinating 3-dimensional ocean habitat and visualize the spatial arrangement and behaviors of marine organisms on larger spatial and temporal scales?
The transmission of sound at low and moderately high frequencies (1 Hz to 100 kHz) is much more efficient in the ocean than in air. Above 100 kHz, sound is more rapidly attenuated, largely because of absorption due to the salt (principally magnesium sulfate) in seawater. Despite this limitation, high-frequency sound in the 38 kHz to 500 kHz range is proving exceedingly useful for studies of zooplankton (our target organisms), because it can be used to detect the presence of animals 10's to 100's of meters away from the transducer producing the sound.
To help interpret the acoustics data, the small boat survey was conducted along the towing path of the MOCNESS, which provided depth-specific collections of animals and environmental measurements (especially temperature and salinity) in the water column at the station. The combination of the MOCNESS and IKMT zooplankton samples and the acoustic data will provide a comprehensive picture of the vertical and horizontal distribution of zooplankton living in this Antarctic ecosystem and will allow evaluation of their status in the face of the rapid environmental changes now taking place here.
-- Peter H. Wiebe (Woods Hole Oceanographic Institution) and Joseph D. Warren (Stony Brook University)
P.S. This is Ann Bucklin with a postscript for today’s blog. Bioacoustics is an aesthetically-pleasing (echograms in deep shades of blue and red) and computationally-challenging (huuuuuge data files) field. The simplicity of the underlying concept – bouncing sound off bugs – is captured in slogans used on Peter and Joe’s T-shirts: “We only measure voltage and time”. It is also apparent in Peter’s haiku poetry on the subject, including this one:
Echoes
A loud ping goes out
A whisper echo returns
From deep-sea creatures
-- Peter Wiebe
The transmission of sound at low and moderately high frequencies (1 Hz to 100 kHz) is much more efficient in the ocean than in air. Above 100 kHz, sound is more rapidly attenuated, largely because of absorption due to the salt (principally magnesium sulfate) in seawater. Despite this limitation, high-frequency sound in the 38 kHz to 500 kHz range is proving exceedingly useful for studies of zooplankton (our target organisms), because it can be used to detect the presence of animals 10's to 100's of meters away from the transducer producing the sound.
To help interpret the acoustics data, the small boat survey was conducted along the towing path of the MOCNESS, which provided depth-specific collections of animals and environmental measurements (especially temperature and salinity) in the water column at the station. The combination of the MOCNESS and IKMT zooplankton samples and the acoustic data will provide a comprehensive picture of the vertical and horizontal distribution of zooplankton living in this Antarctic ecosystem and will allow evaluation of their status in the face of the rapid environmental changes now taking place here.
-- Peter H. Wiebe (Woods Hole Oceanographic Institution) and Joseph D. Warren (Stony Brook University)
P.S. This is Ann Bucklin with a postscript for today’s blog. Bioacoustics is an aesthetically-pleasing (echograms in deep shades of blue and red) and computationally-challenging (huuuuuge data files) field. The simplicity of the underlying concept – bouncing sound off bugs – is captured in slogans used on Peter and Joe’s T-shirts: “We only measure voltage and time”. It is also apparent in Peter’s haiku poetry on the subject, including this one:
Echoes
A loud ping goes out
A whisper echo returns
From deep-sea creatures
-- Peter Wiebe
No comments:
Post a Comment